

Abstract—The Real Time Embedded Systems (RTES) project

was created to study the design and implementation of high-
performance, heterogeneous, and fault-adaptive real time
embedded systems. The driving application for this research was
the proposed BTeV high energy physics experiment, which
called for large farms of embedded computational elements
(DSPs), as well as a large farm of conventional high-
performance processors to implement its Level 1 and Level 2/3
triggers. At the time of BTeV's termination early in 2005, the
RTES project was within days of completing a prototype
implementation for providing a reliable and fault-adaptive
infrastructure to the L2/3 farm; a prototype for the L1 farm had
been completed in 2003. This paper documents the conclusion of
the RTES focus on BTeV, and provides an evaluation of the
applicability of the RTES concepts to other systems.

Index Terms—Computer reliability, large-scale systems, real
time systems, reliability modeling

I. INTRODUCTION

HE Real Time Embedded Systems (RTES) project [1] was
born from a need address the concerns voiced by a project

review conducted in 2000, for the proposed BTeV high energy
physics experiment [2], which (at the time) called for
approximately 2500 embedded processors in its Level 1 trigger,
and a comparable number of commodity computers in its Level

Manuscript received June 3, 2005. This work was supported in part by
the U.S. National Science Foundation Information Technology Research
Program under Grant ACI-0121658.

M. J. Haney is with the Department of Physics, University of Illinois
at Urbana-Champaign, Urbana, IL 61801 USA (phone: 217-244-6424;
fax: 217-333-4990; e-mail: m-haney@uiuc.edu).

S. Ahuja, T. Bapty, S. Neema, S. Nordstrom, S. Shetty, and D. Yao
are with the Institute for Software Integrated Systems, Vanderbilt
University, Nashville, TN 37235 USA.

P. Sheldon is with the Physics and Astronomy Department,
Vanderbilt University, Nashville, TN 37235 USA.

H. Cheung and J. Kowalkowski are with Fermi National Accelerator
Laboratory, Batavia, IL 60510 USA.

Z. Kalbarczyk, A. Khanna, and L. Wang are with the Department of
Electrical and Computer Science, University of Illinois at Urbana-
Champaign, Urbana, IL 61801 USA

D. Messie, J. Oh, and D. Volper are with the Department of Electrical
Engineering and Computer Science, Syracuse University, Syracuse, NY
13244 USA.

D. Mossé is with the Department of Computer Science, University of
Pittsburgh, Pittsburgh, PA 15250 USA.

2/3 trigger:
"Given the very complex nature of this system

where thousands of events are simultaneously and
asynchronously cooking, issues of data integrity,
robustness, and monitoring are critically important
and have the capacity to cripple a design if not dealt
with at the outset… BTeV [needs to] supply the
necessary level of “self-awareness” in the trigger
system."

The RTES group was formed as a collaborative effort
between electrical engineers, computer scientists, and high
energy physicists, to research the design and implementation
of high-performance, heterogeneous, fault-tolerant and fault-
adaptive real-time systems, for which the L1 and L2/3 trigger
computational resources of BTeV would serve as a archetype.

II. RTES ASPECTS

The RTES project approached this problem by considering
both design-time modeling and run-time capabilities. Figure 1
shows the overall project perspective.

Fig. 1. Design Time and Runtime aspects of RTES. Multiple domain-
specific languages are used at the Design and Analysis level, to represent
system organization and behavior. Synthesis produces runtime artifacts
(codes, scripts). Runtime middleware (VLAs, ARMORs) provides
detection and mitigation of faults.

Each of these aspects are described in the following

subsections.

The RTES Project - BTeV, and Beyond

Michael J. Haney, Member, IEEE, Shikha Ahuja, Ted Bapty, Harry Cheung, Zbigniew Kalbarczyk,
Akhilesh Khanna, Jim Kowalkowski, Derek Messie, Daniel Mossé, Sandeep Neema, Steve Nordstrom,

Jae Oh, Paul Sheldon, Shweta Shetty, Dmitri Volper, Long Wang, Di Yao

T

A. Modeling

A graphical modeling tool called the Generic Modeling
Environment (GME [3]) was used to apply model integrated
computing methods to the specification and analysis of the
system. GME supports domain-specific languages for
representing differing dimensions of the system organization
and behavior, as well as the meta-modeling capabilities for
defining new domain-specific languages

B. Adaptive Reconfigurable Mobile Objects for Reliability

Adaptive Reconfigurable Mobile Objects for Reliability
(ARMORs [4]) are multithreaded processes internally
structured around objects ("elements") which provide
functions or services. Every ARMOR process contains a basic
set of elements that provide core functionality, e.g., reliable
point-to-point inter-ARMOR messaging, and ARMOR-state
checkpointing. A modular, event-driven architecture permits
developers to customize an ARMOR process's functionality
and fault-tolerance services (detection and recovery)
according to the application's needs. The self-checking
ARMOR runtime environment includes: one fault-tolerance
manager (FTM) to initialize the ARMOR-based system
configuration, to maintain registration information on all
ARMORs and applications, and to initiate recovery from
ARMOR and node failures; one heartbeat ARMOR (HB) to
detect failures in the FTM; one daemon ARMOR per node,
acting as a gateway for ARMOR-to-ARMOR communication;
and any number of execution ARMORs, which launch and
monitor application processes.

C. Very Light Weight Agents

Very lightweight agents (VLAs [5]) are responsible for
providing a lightweight, adaptive layer of fault detection and
mitigation. Agents consist of a relatively few lines of code
embedded within applications, or acting as independent
processes, which monitor hardware and software integrity.
VLAs can be proactive or reactive, depending on their scope.

D. Load Balancing and Network Simulation

In addition to descriptive system modeling using GME, the
RTES project also studied adaptive dynamic load-balancing
[6], and thermal management, in an effort to understand the
nature of the processing farms, and how best they could be
utilized, both to perform their mission-critical processing, as
well as to support lower priority (offline) computing on an as-
available basis.

III. SUPERCOMPUTING 2003

As a first exercise in demonstrating their methodologies, the
RTES group developed a prototype for the BTeV Ll trigger
processing farm, using digital signal processors (DSPs) of the
type being studied by BTeV at that time. This prototype was
demonstrated at the Super Computing 2003 conference [7]. It
modeled 3 farmlets of 3 DSPs each, monitored by a PC running

Linux; an additional Windows-based PC served as a
communications processor. Additional DSPs played the roles
of farmlet buffer managers, and the event generator. GME was
used to define the execution behavior of the DSPs, as well as
to define the communications channels between DSPs and the
Windows PC. VLAs were developed for fault detection on the
DSPs; ARMORs were not sufficiently "lightweight" for
incorporation in the DSP runtime environment. (BTeV later
determined that a smaller number of conventional processors,
such as the PowerPC, could serve the needs of the L1 trigger
as an alternative to DSPs; ARMORs were to have been
revisited for incorporation in the next generation L1 farm.)
ARMORs were developed for both the Windows and Linux
PCs, to provide oversight of the communications and the user
control task. Overall control/display was provided by the
Experimental Physics and Industrial Control System (EPICS [8])
software. A block diagram of this system is show in Figure 2.

Fig. 2. SC2003 Demonstration System. 16 DSPs were monitored and
controlled by a Linux PC, using a Windows PC as a communication
channel. VLAs were implemented for the DSPs; ARMORs were
developed to support the PCs. VLAs reported to ARMORs.

A formal review of the project software was conducted after

the conference. In response to this review, it was recognized
that GME would need to serve a large number of domains and
submodels: system description, message modeling, fault
mitigation behavior, run control behavior, user interface
definition, etc. For the ARMOR software, it was recognized
that custom (application-specific) ARMOR elements needed to
be easy to create, and that package organization and version
control were vital. This review strongly influenced Demo
System 2004.

IV. DEMO SYSTEM 2004

As a next effort, the RTES project undertook to prototype
the L2/3 trigger commodity processor farm. Hardware for this
farm was accumulated by BTeV, recycled from other computing
farms at Fermilab. The farm was heterogeneous (dual-CPU P3's
and P4's; at least 4 different speeds), and several exhibited
hardware problems. It was an excellent setting for
demonstrating reliable software infrastructures.

In accordance with the earlier project review, the use of GME
was dramatically expanded in this effort, to provide five
different domain-specific graphical languages. The System

Integration Modeling Language (SIML) provided a high level
specification of the system; artifacts generated from this model
(scripts and configuration files) were used to build, deploy,
and configure the runtime system. The Data Types Modeling
Language (DTML) defined the message data types, and
abstracted the details of the underlying communications
protocols; artifacts generated from these models (code)
provided marshalling and demarshalling middleware. The Run
Control Modeling Language (RCML) described the behavior of
the underlying trigger application control framework; the
artifacts generated from these models (Python scripts)
provided global, regional, and local run control state machines.
The GUI Configuration Modeling Language (GCML) defined
the layout of the user interface; the artifacts generated from
this model (Matlab .M files) were used to create the monitoring
and control for the demonstration. Matlab was chosen to
succeed EPICs for Demo System 2004, with the thought that a
commercial-based solution would be easier to develop and
maintain. It was also another opportunity to demonstrate the
adaptability of GME.

The fifth language addressed a cross-concern, between
GME modeling and the ARMOR fault mitigation middleware.
The Fault Mitigation Modeling Language allowed finite state
machine graphs to characterized custom ARMOR behavior.
The artifacts generated from these models were custom
ARMOR elements.

Packaging, organization, and versioning concerns were
addressed, and resulted in an aggressive use of CVS, and the
development of a fully automated build system. Code changes
or GME drawing changes, by any of the collaborating team
members, could quickly be committed to the shared CVS
repository, then checked out and compiled by another. Since
GME defined metamodels for the graphical languages, it was
commonplace for a metamodel to "compile" into an interpreter,
which in turn processed a domain model, to produce C++
source code, which was then compiled into the run tree.

A block diagram of the system is shown in Figure 3.

Fig. 3. Demo System 2004. Worker nodes running the L2/3 filter
application, with Run Control (RC), VLAs and ARMOR middleware, are
overseen by regional manager nodes (also ARMORed), which are
overseen by an ARMORed global node. The user interface is GME-define

Matlab code. Elvin publish-subscribe messaging is used for non-ARMOR
communications.

Several different test configurations were developed using

the SIML system language, employing variously 3, 12, and 54
worker nodes (performing L2/3 processing), with additional
regional and global control nodes. As each node was a dual-
CPU machine, these configurations allowed the testing of
ARMORs, VLAs, and GME-derived communications and
control to be applied to over 120 processors. The "16 node"
(12 workers) and "65 node" (54 workers) systems were
demonstrated at the Real Time and Embedded Technology and
Applications Symposium, March 2005 [9].

Developing and supporting both "16 node" and "65 node"
configurations had several beneficial effects. Effective
software engineering was vital to minimize the number of
instances where the "same change" needed to be applied. And
rapid remapping between configurations exposed scale-
dependent behaviors and system bugs that might not
otherwise have been detected only by the testing of one
configuration.

V. BEYOND BTEV

Beyond the BTeV project, the RTES project is examining
several alternative experiments and projects to which the
solutions developed for and lesson learned from the
SuperComputing 2003 and Demo System 2004 prototypes may
be applied.

A. CMS

Model integrated computing and domain-specific modeling
languages, with automated code generation, are applicable to
any large scale system, to mitigate complexity associated with
design management and component integration.

A study is in progress in the use of GME-based models for
system description, finite state machine representation, and
message definition, each with its own automated artifact
generation, for potential application to the XDAQ subsystem
of the CMS project at CERN. Each domain-specific graphical
language has an associated interpreter, which produces scripts
(e.g. Python), code fragments (e.g. C++), configuration files,
etc., as appropriate for the problem domain.

The HLT (high level trigger) framework is also being
explored, as a candidate for adding fault tolerance modules.
Several VLA design principles are being investigated for
providing adaptive capabilities under dynamic error
conditions, including game theoretical solutions assuming
rational agents [10].

As CMS is a well developed project with critical deadlines,
the RTES study is seeking to demonstrate solutions to
outstanding needs, without requiring changes or resources
from CMS. Unlike BTeV, where model integrated computing
had an opportunity to define the methodologies employed in

system design, RTES must now demonstrate agility and
economy in addressing existing issues in CMS. However, this
demonstration should prove general applicability of these
RTES concepts.

B. LQCD

Many computational systems with fault sensitivities can
benefit from automated detection and fast fault recovery.

The ARMOR middleware is being ported to the Lattice
Gauge Theory Computational Facility at Fermilab, in support of
Lattice Quantum Chromo Dynamics (LQCD) calculation. This
processing is highly sensitive to faults, as the failure of a
single process in an active cluster can compromise the
processing of the entire cluster. Check-pointing and real time
process recovery/migration are being studied, to mitigate the
system-wide effects of single point failures. The LQCD codes
are real applications, unlike the L2 model used in Demo System
2004. Also, varying numbers of protected nodes will create an
interesting testbed for ARMOR configuration and
communication scaling.

The LQCD applications further differ from the L1 and L2/3
farm applications of BTeV, in that they are batch processing
(rather than operator overseen), and the scope of processes to
be supervised is considerably more dynamic than the quasi-
static L1 and L2/3 trigger applications. Fully self-sufficient
solutions, with clean consumer (API) interfaces, are required.

C. Grid-based applications

Load balancing and networks studies of the BTeV L2/3 farm
will be generalized, to consider inter-farm scheduling and
communications, in support of Grid-based processing. The
farms provide not only computational power for the
reconstruction tasks, but also off-line and analysis jobs. This
expansion will ensure that the scheduling of the farm resources
will be done in a more resource-efficient manner, taking into
account the resource needs of the jobs (e.g. number of
processors or processor-hours required), deadlines (e.g. "need
result by Monday noon"), as well as load, temperature, and
energy constraints.

D. Other

Another testbed being examined for ARMORs and VLAs is
the Dark Energy Survey (DES), and their adoption of the
MONSOON data acquisition system with a digital camera to be
used on the Blanco 4m telescope at the Cerro Tololo
Interamerican Observatory. The site is remote (a hilltop in
Chile), so inference and adaptation must replace observation
and intervention.

This is not a critical, real time hard system, as it may be
possible to repeat an image acquisition if a fault is quickly
detected and remitted. Also, the system is computationally
modest, requiring only a few processors. But the application
software for this project is well developed and documented,
and will clearly demonstrate the "cost" of incorporating
ARMOR and VLA methodologies.

VI. CONCLUSION

The RTES project was created to address the fault adaptive
needs of the BTeV high energy physics project. However, the
design-time modeling and runtime middleware developed by
this project are applicable to many large, high performance,
heterogeneous, real-time embedded application environments.
Several differing environments are currently being explored.

REFERENCES
[1] Information on the RTES project is available from

www-btev.fnal.gov/public/hep/detector/rtes/index.shtml
[2] Information on the BTeV Experiment is available from

www-btev.fnal.gov/public/GeneralInformation.shtml
[3] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C.

Thomason IV, G. Nordstrom, J. Sprinkle, P. Volgyesi, "The
Generic Modeling Environment", Workshop on Intelligent Signal
Processing, Budapest, Hungary, May 17, 2001.

[4] Z. Kalbarczyk, R. K. Iyer, and L. Wang, "Application Fault
Tolerance with Armor Middleware," IEEE Internet Computing,
Special Issue on Recovery-Oriented Computing, March/April 2005,
pp 28-37.

[5] J. C. Oh, M. S. Tamhankar, D. Mosse', "Design of Very
Lightweight Agents for Reactive Embedded Systems", Proceedings
of the 10th IEEE International Conference and Workshop on the
Engineering of Computer-Based Systems, 7-10 April 2003, pp
149-158.

[6] J. Oh, R. Chopade, S. Vagir, R. Garg, "RK+MOSIX: A Real-Time
Kernel with Task Migration Support", Brazilian Workshop of Real-
Time, Fortaleza, Brazil, 13 May 2005.

[7] D. Messie, M. Jung, J. C. Oh, S. Shetty, S. Nordstrom, M. Haney,
"Prototype of Fault Adaptive Embedded Software for Large-Scale
Real-Time Systems", Proceedings of the 12th IEEE International
Conference and Workshop on the Engineering of Computer-Based
Systems, 4-7 April 2005, pp 498-505.

[8] L. Dalesio, "EPICS: Recent Applications and Future Directions",
Proceedings of the 2001 Particle Accelerator Conference, 18-22
June, 2001, pp 276-278.

[9] S. Ahuja, et al., "RTES Demo System 2004", ACM SIGBED
Review, Special Issue on High Performance, Fault Adaptive, Large
Scale Embedded Real-Time Systems, July 2005, Volume 2, Number
3.

[10] D. Messie, and J. C. Oh, "Polymorphic Self-* Agents for Stigmergic
Fault Mitigation in Large-Scale Real-Time Embedded Systems",
Fourth International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), Utrecht, The Netherlands, July,
2005.

